ALMA Capturing

How dœs the Atacama Large Millimeter Array telescope capture photons?

Martin Tournebœuf

Dreamlab Technologies

1st March 2024

3/ Deta

Table of Content

1/ Introduction

2/ Example

3/ Detail

4/ Conclusion

Introduction

1/ Introduction

- Collaboration
- Geolocation
- Electrolocation
- Pipeline

2/ Example

3/ Detail

4/ Conclusion

/ Introduction	2/ Example	3/ Detail	4/ Conclusion
●୦୦୦	0000	0000	0000

Collaboration

1/ Introduction	3/ Detail	
0000		

	Introductio	n
0	00	

3/ Detai

/ Introduction	2/ Example	3/ Detail	4/ Conclusion
⊃●○○	0000	0000	0000

Introduction
000

2/			p

3/ Deta 0000

- 1. Safety
- 2. Altitude
- 3. Humidity
- 4. Latitude
- 5. Turbulences
- 6. Accessibility

Altitude	5000m
Antenna	66
Wavelength	1mm
Frequency	300GHz
Water (WVP)	1mm
Temperature	-269°C

Ex		pl	¢

3/ Deta

4/ Conclusion 0000

I. Safety

- 2. Altitude
- 3. Humidity
- 4. Latitude
- 5. Turbulences
- 6. Accessibility

Altitude	5000m
Antenna	66
Wavelength	1mm
Frequency	300GHz
Water (WVP)	1mm
Temperature	-269°C

2/ Example 0000

3/ Deta

4/ Conclusion

Geolocation

1. Safety	
-----------	--

- 2. Altitude
- 3. Humidity
- 4. Latitude
- 5. Turbulences
- 6. Accessibility

Altitude Antenna Wavelength Frequency Water (WVP) Temperature

5000m 66 1mm 300GHz 1mm -269°C

1/ Introduction ○●○○	2/ Example 0000		3/ Detail 0000	4/ Conclusion 0000
Geolocation				
Takeaway	 Safety Altitude Humidity Latitude 			
Water + Light = I	Rainbow			
	Altitude Antenna Wavelength Frequency Water (WVP) Temperature	5000m 66 1mm 300GHz 1mm -269°C		

		p	

3/ Deta

- 1. Safety
- 2. Altitude
- 3. Humidity
- 4. Latitude
- 5. Turbulences
- 6. Accessibility

Altitude	5000m
Antenna	66
Wavelength	1mm
Frequency	300GHz
Water (WVP)	1mm
Temperature	-269°C

2/ Example 0000 3/ Deta

- 1. Safety
- 2. Altitude
- 3. Humidity
- 4. Latitude
- 5. Turbulences
- 6. Accessibility

1/ Introduction	2/ Example	3/ Detail	4/ Conclusion
○○●○	0000	0000	0000

0000	

1/ Introduction	3/ Detail	
0000		

1/ Introduction		3/ Detail	
0000	0000	0000	0000

Look how they shine for you And everything you do Yeah, they were all yellow

1/ Introduction		3/ Detail	
0000	0000	0000	0000

Look at the stars Look how they shine for you And everything you do Yeah, they were all yellow

Your eye evolved to see the sun Stars have different colors

1/ Introduction	3/ Detail	
0000		

1/ Introduction	3/ Detail	
0000		

1/ Introduction	3/ Detail	
0000		

Sn1987a (star)

1/ Introduction	3/ Detail	
0000		

Sn1987a (star)

1/ Introduction		3/ Detail	
0000	0000	0000	0000

1/ Introduction	3/ Detail	
0000		

1/ Introduction	3/ Detail	
0000		

Sn1987a (star)

M87* (black hole)

2/ Example

1/ Introduction

2/ Example

- Emission
- Propragation
- Reception
- Degeneration

3/ Detail

4/ Conclusion

2/ Example	3/ Detail	4/ Conclusion
0000 ¹		

2/ Example	3/ Detail
0000	

3/ Detai

4/ Conclusion

	2/ Example
0000	0000

3/ Detai

4/ Conclusion

Emission

2/ Example ●○○○

Emission

Emission

2/ Example	3/ Detail
0000	

Propragation

2/ Example

3/ Detai

4/ Conclusion 0000

Reception

Credit: Joseph Fourier 1822

2/ Example ○○●○

3/ Detai

4/ Conclusion

Reception

Credit: Joseph Fourier 1822

Reception

Credit: Joseph Fourier 1822

1/ Introduction 0000	2/ Example ○○○●	3/ Detail 0000	4/ Conclusio 0000
Degeneration			
The complex reality:			

1/ Introduction 0000	<mark>2/ Example</mark> ○○○●	3/ Detail 0000	4/ Conclusior 0000
Degeneration			
The complex reality:			\bigtriangledown
Problem		Solution	

1/ Int 000	roduction O	<mark>2/ Example</mark> ○○○●	3/ Detail 0000	4/ Conclusi 0000
D	egeneration			
	The complex reality:		\bigtriangledown	
	Problem		Solution	
	Waves are continuous			

1/ In 000	troduction 00	2/ Example ○○○●	3/ Detail 0000	4/ Conclus 0000
D	egeneration			
	The complex reality:			\bigtriangledown
	Problem		Solution	
	Waves are continuous		Have more baselines	

1/ Int 000	roduction O	2/ Example ○○○●	3/ Detail 0000	4/ Conclu 0000
D	egeneration			
	The complex reality.		\bigtriangledown	
	Problem		Solution	
	Waves are continuous		Have more baselines	
	Space angle have 2 dim	ensions ($ heta$ and ϕ)		

1/ Int 000	troduction DO	<mark>2/ Example</mark> ○○○●	3/ Detail 0000	4/ Concli 0000
D	egeneration			
	The complex reality:			
	Problem		Solution	
	Waves are continuous		Have more baselines	
	Space angle have 2 dim	ensions (θ and ϕ)	Have more baselines	

1/ Introduction 0000	2/ Example ○○○●	3/ Detail 0000	4/ Concl 0000
Degeneration			
The complex reality:			
Problem		Solution	
Waves are continuous		Have more baselines	

Space angle have 2 **dimensions** (θ and ϕ)

There may be more than **one punctual** rock

Glossary: baseline = pair of detector For n detectors, there are $\frac{n(n-1)}{2}$ baselines

Have more **baselines**

1/ Introduction 0000	<mark>2/ Example</mark> ○○○●	3/ Detail 0000	4/ Conclu 0000
Degeneration The complex reality:			
Problem		Solution	

Waves are continuous	Have more baselines
Space angle have 2 dimensions ($ heta$ and ϕ)	Have more baselines
There may be more than one punctual rock	Have more baselines

1/ Intr 0000		<mark>2/ Example</mark> ○○○●	3/ Detail 0000	4/ Conclu 0000
D.	egeneration The complex reality:			
	Problem		Solution	

Problem	Solution
Waves are continuous	Have more baselines
Space angle have 2 dimensions ($ heta$ and ϕ)	Have more baselines
There may be more than one punctual rock	Have more baselines
Electric noise , atmospheric cloud , spurious signal	

1/ Introduction 0000	2/ Example ○○○●	3/ Detail oooo	4/ Conclu: 0000
Degeneration The complex reality	:		
Problem		Solution	

Problem	Solution
Waves are continuous	Have more baselines
Space angle have 2 dimensions ($ heta$ and ϕ)	Have more baselines
There may be more than one punctual rock	Have more baselines
Electric noise , atmospheric cloud , spurious signal	Calibrate, drop

1/ Introduction 0000	2/ Example 0000	3/ Detail 0000	4/ Conclusion 0000
3/ Detail		/ 🖌	
1/ Introduction		star	
2/ Example			
3/ Detail			
Antenna	antennaA	antennaB laser	
Electronic		$z^1 \rightarrow z^1 \rightarrow z^1 \rightarrow $	
Correlator			
 Quantity 		+ + + correlator	
4/ Conclusion		database	

	3/ Detail	4/ Conclusion
	0000	

Draw me a Photon!

3/ Detail

Electromagnetic Equation

$$\left|\partial_t^2 E = c_0^2 \nabla^2 E\right|$$

$$\frac{\partial^2 E}{\partial t^2} = c_0^2 \left(\frac{\partial^2 E}{\partial x^2} + \frac{\partial^2 E}{\partial y^2} + \frac{\partial^2 E}{\partial z^2} \right)$$

Source: Electromagnetic Wave Equation (Wikipedia)

3/ Detail

Hydrodynamic Equation

1.
$$\nabla \cdot V = q$$

$$2. \quad \nabla \cdot \quad W = 0$$

3.
$$\nabla \times V = -\partial_t W$$

4.
$$\nabla \times W = (J + \partial_t V)/a_0^2$$

Fluid Incompressibility Vortex Divergence Vortex Velocity Mass Conservation

$$\begin{bmatrix} \partial_t^2 V = a_0^2 \nabla^2 V \end{bmatrix}$$
$$\frac{\partial^2 V}{\partial t^2} = c_0^2 \left(\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial u^2} + \frac{\partial^2 V}{\partial z} \right)$$

Source: On Fluid Maxwell Equations (T. Kambe 2012) and Wave Equation (Wikipedia)

 $\overline{2}$

Electromagnetic Wave

Photons are the carriers of the electric force.

- 1. Created by decelerated charges
- 2. Displaced by electromagnetic field currents
- 3. Destroyed by accelerating charges

Without **electric** force there would be no **light** (and reciprocally)

3/ Detail

Electromagnetic Wave

Photons are the carriers of the electric force.

Takeaway

Distortion of the electromagnetic field

3. Destroyed by accelerating **charges**

Without **electric** force there would be no **light** (and reciprocally)

Photon Concentration Fields

	3/ Detail	
	0 000	

Capturing Visible Photon with Carge-Coupled Device (CCD)

1/ Introduction	2/ Example	3/ Detail	4/ Conclusion
0000	0000	0000	

Capturing Visible Photon with Carge-Coupled Device (CCD)

Credit: Willard S. Boyle 1969, ESO, OmegaCam, 2011

1/ Introduction 0000 2/ Exampl 0000 3/ Deta

4/ Conclusion

Capturing Radio Photon: Open Wire

4/ Conclusion

Capturing Radio Photon: Open Wire

Capturing Radio Photon: Open Wire

4/ Conclusion

Capturing Radio Photon: Wave Trap

2/ Exampl 0000 3/ Detail

Capturing Radio Photon: Feed Horn and OMT

Credit: Chile, UC, Ignacio Barrueto, 2016 and Chile, UC, Nicolas Reyes, 2014 and Canada, HIA, Charles Cunningham, 2011 and Taiwan, ASIAA. Yau De(Ted) Huang, 2016. See Feed Horn (Wikipedia) 2/ Exampl 0000 3/ Detail

Capturing Radio Photon: Feed Horn and OMT

Takeaway

Radio antennas measure both the **amplitude AND phase** of the incident light ("coherent detectors") ALMA antenna receivers have only **one pixel**

Credit: Chile, UC, Ignacio Barrueto, 2016 and Chile, UC, Nicolas Reyes, 2014 and Canada, HIA, Charles Cunningham, 2011 and Taiwan, ASIAA, Yau De(Ted) Huang, 2016. See Feed Horn (Wikipedia) 2/ Example 0000 3/ Detail ○●○○ 4/ Conclusion

Electronic Pipeline

From 300GHz analog to 150MHz digital

Credit: ALMA, Sergio Otarola

3/ Detail ○●○○

Electronic Pipeline

From 300GHz analog to 150MHz digital

N	Fct	Acc	Name
1	Polarisation	OMT	OrthoMode Transducer
2	Amplification	CLNA	Cryogenic Low-Noise Amplifiers
3	Filtering	BPF	BandPass Filter
4	Equalisation	GE	Dual Gain Equalizer
5	Down-convertion	SIS	Superconductor-Insulator-Superconductor Mixer
6	Digitalization	ADC	Analog to Digital Converter
7	Multiplexing	MUX	Multiplexer
8	Transport	FO	Fiber Optic

Digitalisation

3/ Detail ○○●○

Correlator Misunderstanding

What correlation is not:

Correlator Misunderstanding

What correlation is not:

• Triangulation

Correlator Misunderstanding

What correlation is not:

- Triangulation
- Combination

Correlator Misunderstanding

What correlation is not:

- Triangulation
- Combination
- Convolution

 $(f * g)(x) := \int f(\tau)g(x - \tau) d\tau$

Correlator Misunderstanding

What correlation is not:

- Triangulation
- Combination
- Convolution

What correlation is:

 $(f*g)(x) := \int f(\tau)g(x-\tau)\,d\tau$

Correlator Misunderstanding

What correlation is not:

- Triangulation
- Combination
- Convolution

What correlation is:

• Sliding product

$$(f\ast g)(x):=\int f(\tau)g(x-\tau)\,d\tau$$

 $(f\star g)(x):=\int f^*(\tau)g(x+\tau)\,d\tau$

Correlator Misunderstanding

$$(f\ast g)(x):=\int f(\tau)g(x-\tau)\,d\tau$$

What correlation is not:

Takeaway

What correlation is:

• Sliding product

g(x+ au) d au

3/ Deta

Correlator Sliding Product

3/ Deta

Correlator Sliding Product

3/ Detail ○○○●

Quantity: Requirements

$$1.7 \times 10^{16} Hz$$

Number	Quantity	Explanation
64^2	Antenna Pairs	Ordered for leads vs lags
2^{2}	Cross Polarisations	XX, XY, YX, YY
8	Base Bands	Tunable from 31.25 MHz to 2 GHz
8192	Spectral Channels	Covering each baseband
62.5 MHz	Input Frequency	Digital signal speed
2	Nyquist Sampling	2 measures per wavelength

Note: Each operation is a 2 bits complex multiply-and-add.

Quantity: Processing Power

$$1.7 \times 10^{16} Hz$$

Number	Quantity	Explanation
4	Quadrants	Cupboards each processing 2 basebands
32	Planes	Shelves Filled with motherboards
4	Circuit Cards	Actually implemented with 16 cards of 16 ASICS
64	ASIC	FPGA
4096	Multiply-add	Also include including 20 bits of integration
125 MHz	Clock Rate	Real Time Electronics

Note: Each operation is a 2 bits complex multiply-and-add.

2/ Exampl 0000 3/ Detail

Quantity: The Correlator Room

1/ Introduction 0000	2/ Example 0000	3/ Detail 0000	4/ Conclusion
4/ Conclusion			
1/ Introduction		, , , , , , , , , , , , , , , , , , ,	
2/ Example			
3/ Detail	antennaA	antennaB	
4/ Conclusion			
• Summary			
• Takeaway			
• Further		correlator	
• Questions?		database	

3/ Deta 0000

Summary

1/ Introduction

- Collaboration
- Geolocation
- Electrolocation
- Pipeline
- 2/ Example
 - Emission
 - Propragation
 - Reception
 - Degeneration

3/ Detail

- Antenna
- Electronic
- Correlator
- Quantity
- 4/ Conclusion
 - Summary
 - Takeaway
 - Further
 - Questions?

0000	0000	0000	0€00
Takeaway			
1 /Introduction		2/ Example	
1. Water + light = rainbo 2. Wind + obstacle = turl 3. Alma captures millime	w pulences s ter wavelength	 Rock at right <=> right flo first Baseline number > antenn Constrain possible scenario independent measures 	at moves a size os with
3/ Detail		4/ Conclusion	
 Light = wave of electro disruption Coherent detectors, m and amplitude Alma's antennas have 	omagnetic field easure phase only one pixel	 Physics: Electro-magnetic Electronics: Transistors Computing: Cross-correlat 	waves ion

	٥d			

Further

ALMA	Electronics	Physics
technical handbook	digital x-correlation (gary)	aperture synthesis (me)
system diagram	transitor amplifier (utube)	spectral lines (sransom)
2030 physics (memo 621)	mixers (liam)	molecules (ddallaca)
2030 system	adc (memo 532)	radiative processes
brochure	2030 corr (memo 617)	interferometry and synthesis
manual en escuela	demux	fundamentals
story of project	transistor animated (utube)	NGC4697 bh mass
casa guides	sis mixer	phangs galaxy survey
vlbi	phase-lock loop (wiki)	large programs
science pipeline	lo1 optical fiber (memo 443)	vlbi m87 bh

Appendix

Band List

Ν	Freq	Wavelength	Country	Shape	Yig freq	Warm	Cold
	(GHz)	(mm)			(GHz)	mult	mult
1	31.3 - 45	6.7 - 9.5	Taiwan/Chile	SSB	31.0 - 40.0	1	1
2	67 - 90	3.3 - 4.5	Europe/Chile	SSB	13.2 - 15.7	6	1
3	84 - 116	2.6 - 3.6	Canada	2SB	15.3 - 18.0	6	1
4	125 - 163	1.8 - 2.4	Japan	2SB	22.2 - 25.8	3	2
5	163 - 211	1.4 - 1.8	Sweden	2SB	13.8 - 16.9	6	2
6	211 - 275	1.1 - 1.4	USA	2SB	12.3 - 14.7	6	3
7	275 - 373	0.8 - 1.1	France	2SB	15.62 - 20.37	6	3
8	385 - 500	0.60 - 0.78	Japan	2SB	21.72 - 27.44	3	6
9	602 - 720	0.42 - 0.50	Netherlands	DSB	22.51 - 26.45	3	9
10	787 - 950	0.32 - 0.38	Japan	DSB	14.8 - 17.4	6	9

Band 3 Diagram

Interstellar Molecules

2		4				8				
	H2O	NH3	CH4	CH3OH	CH2CH(OH)	CH3CC	DOH	(CH3)2	20	
CO	H2S	H2CO(?)	SiH4	CH3SH	c-C2H4O	HC(O)	DCH3	CH3Cł	H2CN	
CSi	HCN	H2CS	CH2NH	C2H4	HC(O)CH3	HOCH	2C(O)H	CH3Cł	H2OH	
CP	HNC	C2H2	NH2CN	H(CC)2H	H3C-CC-H	H3C-O	C-CN	CH3C4	4H	
CS	CO2	HNCO	CH2CO	CH3CN	CH3NH2	H2C6		HCC-C	C-CC-CN	
NO	SO2	HNCS	HCOOH(?)	CH3NC	CH2CH(CN)	H(CC)3	3H	C8H		
	MgCN	H3O+	HCC-CN	HC(O)NH2	HCC-CC-CN	H2C=0	CH-C(O)H	CH3C(O)NH2	
SO	MgNC	SiC3	HCC-NC	HCC-C(O)H	C6H	CH2CC	CHCN	C8H-		
HCI	NaCN	C3S	c-C3H2	HC3NH+	C6H-	C7H		CH3Cł	HCH2	
NaCl	N2O	H2CN	I-C3H2	HC4N	H2NCH2CN					
KCI	NH2	c-C3H	CH2CN	C5N						
AICI	OCS	I-C3H	H2COH+	C5H						
	CH2	HCCN	C4Si	H2CCCC						
PN	HCO	CH3	C5	H2CCNH						
	C3	C2CN	HNCCC	C5N-						
SiO	C2H	C30	C4H	c-H2C3O						
	C2O	HCNH+	C4H-							
NH	C2S	HOCO+	HC(O)CN							
OH	AINC	CO2								
C2	HNO	C3N-								
CN	SiCN	HCNO								
HF	N2H+	HSCN		10	11		12		13	
FeO	SiNC	H2O2		(CH3)2CO	HCC-CC-CC-C	CC-CN	C6H6		HCC-CC-(0-00-00-0
LiH	c-SiC2			HOCH2CH2OH	CH3C6H		CH3CH2C	H2CN		
CH	HOC+			CH3OCH2OH	HC(O)OCH2C	CH3				
CH+	HOC+			H3C-CH2-C(O)H						
CO+	HCS+			CH3(CC)2CN						
SO+	H3+									
	OCN-									
02	HCP									

Software Trinity

OMC

SCIENCE

Continuous

AlmaSw

Subsystems

Build

Meta

ACS

Inderworld

Network Harddisk LogDetector

Casa BulkData

OMC

SSR

TelCal

AcsStartup

Component

Channel

Patches

InputParsing

AcsSw

Database

Control

Archive

AcsRemoteTMCDB

AcsPassive

AcsData

External

products Consistency

Services

NTLAS

SelfChecking

Scheduling

Corr